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Executive summary 

This deliverable describes the necessary scientific and technical work done for the gesture and 
action modelling, recognition and comparison, in order to build the interaction mechanism on 
which the embodied user experience in the museum will be based. To make the user able to 
interact with a machine (an installation in our case) it is necessary first of all a) to detect his body 
(input from 5.2), then b) to model and recognise his/her gestures c) compare them with a 
reference model. The comparison will trigger an interaction mechanism that may use different 
modalities (visual, auditory etc.).  

The scientific and technical aspects of the 2 multimodal interactive techniques that will be used 
are described in this document.  

In order to achieve the gesture modelling we introduce the Gesture Operational Model which 
describes the relationships between different body joints while doing a movement. More 
precisely it mathematically defines how gestures are performed based on assumptions that focus 
on the dynamic association of body entities, their synergies, and their serial and non-serial 
mediations, as well as, their transitioning over time from one state to another. Then, the 
assumptions of the Gesture Operational Model are translated into a simultaneous equations 
system for each body entity through State-Space modelling. The coefficients of the equation are 
computed using the Maximum Likelihood Estimation method. In the recognition phase, State-
Space modelling is combined with continuous Hidden Markov Models to boost the recognition 
accuracy when the likelihoods are not confident. The performance of the algorithm (hybrid 
HMMs) has been evaluated using a glassblowing dataset that contains gestures from the routine 
of the creation of a glass carafe. The results are compared to the performance of HMMs, without 
the contribution of the State-Space representation method. The presented methodology 
surpasses the results of the HMMs and the results appear to be very satisfying and promising. 
Those recognition results are exploited in a preliminary stage, by mapping the gestures 
performed by the user of the cultural installation. Explicit mapping is used as a method for the 
sonification of the users’ gestures. According to how well each gesture is performed, the pitch 
and panning of the produced sound is affected. These sound modalities work as instructions for 
the user to perform the gestures as close to the original ones as possible.  

Furthermore, in this deliverable an alternative framework for natural, gestures based interaction 
is presented. The implementation of the infrastructure stems from the requirements of the 
Mixed Reality Surface where the users should not only interact with physical objects (through 
sonification) but also have a way of interacting with the UI of the system in order to execute 
specific workflow commands such as start, stop, pause, resume, etc. These requirements pose 
extra difficulties for the runtime recognition engine which is the main research part of this 
deliverable. As runtime recognition and sonification is a complex Computer Vision problem it was 
decided to take some of the burden of the recognition to an existing software platform which is 
the Microsoft Kinect SDK. This SDK in order to support seamless interaction regardless of the user 
skeleton size, rotation and distance from the screen needs calibration which is a process that in 
most of the cases results to reduced user experience. To cope with this situation Mingei facilitates 
through Nibbler a technique based on DTW (Dynamic Time Warping) that permits to align in time, 
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timeseries of different length and thus minimise the need for calibration as the gesture and 
posture recognition system dynamically adapt to the skeleton characteristics of each user but also 
to the speed of interaction seamlessly identifying gestures and postures. 

The deliverable is structured as follows: 

Section 1 introduces the context and purpose of this deliverable, specifically regarding the two 
alternative multimodal interaction technologies developed by the project. The first is targeting 
gesture modelling/recognition/comparison using the sound modality for interaction since user’s 
movement is sonified based on the differences between the reference and the user’s model. The 
second regards a gesture and posture recognition framework capable of running simultaneously 
with the sonification modality, allowing natural interaction with the UI of a Mixed Reality 
application.  

Section 2 provides an overview of the state of the art regarding research efforts on movement 
modelling and the application of Machine Learning (ML) technologies for gestures recognition. 
Then it moves further to the elaboration of background work relevant to the field of movement 
sonification and the previous expertise of the consortium in the research subjects in question. 
Mingei’s aim in this field of research is to get advantage of the existing knowledge, combine ML 
algorithms to statistical methods to give the best results for real time gesture recognition with 
cutting edge technology and the creation of an installation for a cultural institution and a chance 
for a full cultural experience for the visitor. 

Section 3 provides a description of the methodology followed by Mingei for gesture modelling 
recognition and comparison for movement sonification. In this context, the methodology pipeline 
is discussed and each step is analysed in detail. Motion capturing took place in a glassblowing 
workshop at Nancy in France. Features were extracted from those data, which were 
then represented in a State-Space form and were used as an input for training the proposed 
hybrid HMMs algorithm. Whenever the HMMs appeared not to be confident concerning gesture 
recognition, the forecasting signal extracted from the State-Space representation and the use of 
ML estimation method was exploited to boost the recognition results.  

Section 4 presents the infrastructure to be used for interacting with the UI of the final system 
while sonification will be employed for interaction with physical objects. For the validation of the 
infrastructure in the context of a similar to Mingei test scenario, where the user is request to 
assume certain gestures, an existing software product of FORTH was used called the mimesis 
game. In this game the infrastructure was used to detect postures in order to measure 
recognition accuracy. This validation is not related with the final user based evaluation of the 
infrastructure that will happen in real life conditions and using the final Mixed Reality Surface in 
the context of the Mingei pilots’ realisation.  

Section 5 provides experimental results and future work.  

This deliverable is submitted in the context of T5.3 of Mingei. This is the first version of the 

deliverable reporting progress achieved during the first year of the project. The second version of 
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the deliverable will be submitted on M24. 
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modelling, gesture-based interaction 
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1. Introduction 

This deliverable describes the necessary scientific and technical work done for the gesture and 

action modelling, recognition and comparison in order to build the interaction mechanism on which 

will be based the embodied user experience in the museum. To make the user able to interact with 

a machine (an installation in our case) it is necessary to first of all detect his body, using an input 

from Task 5.2. The next steps for an efficient interaction to be achieved are the recognition of the 

users’ gestures and their comparison with a reference model. This comparison will finally trigger an 

interaction mechanism using different modalities (visual, auditory, etc.) that will work as a feedback 

or instructions for the user. These instructions will motivate the user to complete specific tasks as 

instructed from the installation itself.  

We describe here 2 different multimodal techniques:  

o The one is focusing on gesture modelling/recognition/comparison based on the State Space 

and Hidden Markov Models. The modality used for interaction is sound since user’s 

movement is sonified based on the differences between the reference and the user’s 

model. Sonification is the use of non-speech audio to convey information or perceptualize 

data1. It complements visualization in a way that helps the user to learn and interact to the 

installation. 

o The other is based on DTW that permits to align in time, timeseries of different length and 

use mostly the visual modality since the user interacts with an avatar projected on a screen. 

Both methods will run in conjunction in real-time to permit, complementing each other. The main 

concept is to provide two different systems one for detecting gestures related to the User Interface 

of the MR surface and another one related to the recognition of craft gestures. The distinction 

between these modalities will allow the system to depend on different sub-system for each task 

thus switching between modalities to reduce error rates, improve effectiveness and enhance user 

experience. 

  

                                                      

1
 https://en.wikipedia.org/wiki/Sonification 

https://en.wikipedia.org/wiki/Sonification
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2.1 State of the Art 

Movement can be defined as the change of someone’s’ position, while gesture is a form of non-

verbal communication in which visible bodily actions communicate particular messages. To reach to 

the point of the movements’ interpretation, thus, to gesture recognition, it is essential to 

understand the existing relationships among human body parts.  

2.1. Movement modelling and representation 

Each body part is strongly connected and affected by the movement of others. We only need to 

think of the movement of a person running to understand that some body parts need to work 

cooperatively with others for a movement to be achieved. Duprey, Naaim, Moissenet, Begon and 

Cheze [1] tried to explain the anatomy of the human body, mostly for clinical and ergonomic uses. 

Concerning mainly the use of statistical methods for mathematical movement representation, 

estimation and forecasting, Zalmai, Kaeslin, Bruderer, Neff and Loeliger [2], used linear state space 

models and provided an algorithm based on local likelihood for reliably detecting and inferring the 

gesture causing magnetic field variations, while Lech and Kostek [3] presented a system based on 

camera and multimedia projector enabling a user to control computer applications by dynamic 

hand gestures. Hand position tracking was achieved using Kalman filters and gesture recognition 

was supported by fuzzy rules. 

2.2. Machine learning for gesture recognition 

Movement modelling and representation methods lead to gesture estimation but don’t allow the 

modelling of precise movement patterns and consequently their recognition, as well as taking into 

consideration qualitative aspects of human movement such as expressivity. These limitations can 

be surpassed with the use of machine learning methods. Several studies have been done in the past 

years in the field of gesture and movement recognition with the use of machine learning methods. 

Pedersoli, Benini, Adami and Leonardi [4], used a Kinect connected to an algorithm of hand-pose 

recognition of American Sign Language that uses HMMs, to achieve real-time recognition of static 

hand-poses and dynamic hand-gestures. Aggarwal and Cai [5] are within the few that modeled the 

body, to proceed to gesture analysis and recognition with tracking cameras, while Sideridis, 

Zacharakis, Tzagkarakis and Papadopouli [6], created a gesture recognition system for IMUs that 

uses the methods of FNNs and SVMs for gesture recognition. Yang and Sarkar [7] have used an 

extension of HMMs for gesture recognition using fragmented observations for their case. 

Machine learning algorithms, such as those based on HMMs [13], Dynamic Time Warping (DTW) 

[14], Hierarchical Hidden Markov Models (H-HMMs) [15], Sequential Monte Carlo techniques [16] 

etc., are widely used for gesture recognition systems for continuous interaction. [17][18][19] 

successively developed a system based on a hybrid model between HMMs and DTW, called Gesture 
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Follower (GF), for both continuous gesture recognition and following, between the template or 

reference gesture, and the input or performed gesture (template-based method). It can learn a 

gesture from a single example (one-shot learning) by associating each template gesture to a ‘state’ 

of a hidden Markov chain [20]. During the performance, a continuous estimation of parameters is 

calculated in real-time, by providing information for the temporal position of the performed 

gesture. Time alignment occurs between the template and the performed gesture, as well as 

offering an estimation of the time progression within the template in real-time.  

There are also some examples where real-time gesture recognition is performed, using again 

methods like Hierarchical HMMs or DTW [8] [9] [10], with some limitations though. Few of those 

limitations are the use of a 1D sensor, or the use of not automated methods -using statistical 

packages-for the case of training the system. However, in some other cases, HMMs have also been 

used in other similar cases [11] for virtual reality installations, where gesture is incorporated. 

Another limitation of HMMs is that observations are produced at the frame level, and as a 

consequence they do not support the transitions between segments [21]. Therefore, [14] [22] 

developed a system based on Hierarchical Hidden Markov Models (H-HMMs) with two levels for 

real-time gesture segmentation and recognition. Similarly to GF, it adopts a template-based 

method and implements one-shot learning. The system is trained with a single pre-segmented 

gesture, which is annotated by the user. Each segment is associated with a high-level state 

(segment state), which generates the sub-models of the signal level (lower level), encoding the 

temporal evolution of the segment [22] [23].  

2.3. Movement sonification 

Gesture recognition output can be used for real-time human-machine interaction, where different 

modalities are mapped to motion parameters to augment human movement in different contexts 

(learning, artistic performances, rehabilitation, etc.). The motion parameters values and/or gesture 

recognition output can be thus used to control the sound characteristics. The term sonification is 

used when variables are mapped to sound parameters by a function [28]; for example, each change 

in velocity results in a defined change of the sound’s pitch or frequency. To sonify human 

movement, different sound to gesture mapping techniques can be used such as the explicit and the 

implicit [29] [30] ones. 

2.3.1. Explicit sound to gesture mapping 

In explicit mapping, gesture parameters are directly mapped to sound control parameters. 

According to [27], the method is efficient but the expressive power and consistency of direct 

relationships can be limited when the sound synthesis parameters are not perceptually meaningful. 

Explicit sonification was used by Volioti at al. where the users were invited to interact with an 

« Intangible Musical Instrument" by performing gestures with their whole body, moving their hands 

and torso [31]. Simple sound parameters (speed of sound) were connected to motion parameters 
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(acceleration of motion) to make the explicit mapping easily understandable by the user. However, 

this direct relationship creates limitations to user’s expressivity as any change in the corresponding 

motion parameter affects the sound synthesis result.  

2.3.2. Implicit sound to gesture mapping 

To overcome some of the limitations of the explicit mapping an alternative solution has been 

defined: the implicit or indirect mapping that uses an intermediate model to express complex 

relations between motion and sound. Volioti et al. [21] during the i-treasures project (Intangible 

Treasures - Capturing the Intangible Cultural Heritage and Learning the Rare Know-How of Living 

Human Treasures FP7-ICT-2011-9-600676-i-Treasures) combined statistical methods like State 

Space (SS) models to perform model estimation and forecasting. The forecasting error was 

computed defining the confidence intervals that are used as threshold within which a gesture is 

accepted as a correct one, along with Particle filtering for gesture recognition. This combination led 

to satisfying recognition accuracy results, improving what was previously done by Caramiaux [16] as 

well as earlier tries [21] [17] where no confidence intervals were used and HMMs or Hierarchical 

HMMs were used instead of Particle Filtering.  

In both the implicit and the explicit sound to gesture mapping, sonification gives a motivation to the 

user to complete all his tasks/gestures by also reaching to a musical goal. Following the tempo of 

the sounds is also a helpful feedback on how well the gestures have been performed and in which 

way they need to be improved. 

2.4. Previous connected work of the Consortium  

During the Intangible Treasures - Capturing the Intangible Cultural Heritage and Learning the Rare 

Know-How of Living Human Treasures FP7-ICT-2011-9-600676-i-Treasures, statistical methods like 

State Space model representation and maximum likelihood estimation to perform model 

estimation and forecasting, were combined. This gives a forecasting error that defines the 

confidence intervals as threshold within which a gesture is accepted as the correct one, along with 

Particle filtering for gesture recognition. This combination led to satisfying recognition accuracy 

results, improving what was previously done by Caramiaux, Montecchio, Tanaka and 

Bevilacqua[23], as well as earlier tries[24][17], where no confidence intervals were used and HMMs 

or Hierarchical HMMs were used instead of Particle Filtering. The aforementioned methodologies 

and research approaches do answer the question of what/which gesture is performed, but not how 

the gesture is performed from the expressive point of view. During the Intangible Treasures - 

Capturing the Intangible Cultural Heritage and Learning the Rare Know-How of Living Human 

Treasures FP7-ICT-2011-9-600676-i-Treasures, an intangible musical instrument was created that 

incorporated the methods mentioned above.  
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Through the State of the Art, the proposed methodologies were either not corresponding to real 

time gesture recognition, the authors used for their experiments sensors with limitations 

themselves, like 1D sensors, or ready statistical packages (like SPSS, Eviews, etc.) were used, that 

didn’t allow the authors to interact and experiment with them in order to improve the results to 

their best possible. The aim now is to get advantage of the existing knowledge, combine machine 

learning algorithms to statistical methods to give the best results for real time gesture recognition 

with cutting edge technology and the creation of an installation for a cultural institution and a 

chance for a full cultural experience for the visitor. 
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3. Methodology 

For managing the creation of the cultural installation mentioned above, a methodology was 

created, as shown in Figure 1, consisting of seven different steps.  

 

Figure 1: Methodology pipeline [34]  

3.1. Data acquisition 

The performance of the algorithm is evaluated with a dataset recorded in the CERFAV laboratory, at 

Nancy, in France. A gesture vocabulary has been defined in order to segment the whole 

glassblowing procedure into small human motion units. 

The gestural vocabulary contains four gestures performed by a glassblower when creating a water 

carafe. The craftsman executes the gestures in a very limited space that is defined by a specific 

metallic construction. The craftsman puts the pipe on the metallic structure, to perform various 

manipulations of the glass using tools, such as pliers. More precisely, he starts by shaping the neck 

of the carafe with the use of pliers, then he tightens the neck to define the transition between the 

neck and the curved vessel, he holds in his right hand a specific paper and shapes the curves of the 

blown part and finalizes the object and fixes the details by using a metallic stick. In general, the 

right hand is manipulating the tools while the left is holding and controlling the pipe (Table 1).  

Table 1. Glassblowing gestural vocabulary [35]  

G1: Fix details with pliers G2: Tighten base of glass G3: Make shape with paper G4: Fix shape 
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3.2. Real-time body tracking 

After motion capturing and data recording, each image sequence of the dataset is imported to the 

OpenPose framework2, which detects body keypoints (or joints) on the RGB image and extracts a 

skeletal model together with the 2D positions of each body joint [33] . These joints are not 

necessarily physical joints. They are keypoints on the RGB image which, in most cases, correspond 

to physical joint centres. OpenPose uses the neck as the root keypoint to compute all the other 

body keypoints. Thus, the motion data are normalized by using the neck as the reference keypoint. 

In addition to this, the coordinates of each joint are derived by the width and height of the camera. 

The extracted features for each joint, were the X and Y positions, as they are provided by 

OpenPose. More specifically, for the current dataset, the 2D positions of the head, neck and 

shoulder, elbows, wrists and hands were extracted, as they were proven to give optimal recognition 

results.  

3.3. Movement representation 

3.3.1. Gesture operational modelling and representation 

Movement is a complex phenomenon and it needs to be studied both spatially and temporally. In 

order to model a movement, human movements need to be described in a way that will involve all 

the elements they depend on.  

                                                      

2
 https://github.com/CMU-Perceptual-Computing-Lab/openpose 

https://github.com/CMU-Perceptual-Computing-Lab/openpose
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Figure 2. Gestural dependencies, a glassblower, a silk weaver [36]  

Observing the movements of a potter, a glassblower or a silk weaver we easily notice some existing 

dependencies among body parts. More specifically, in the case of a potter for the creation of a clay 

vase, the right and the left hand have to work synergistically creating inter-limb synergies, in order 

for the vase to be completed, while in the case of a glass-blower, apart from synergy, the different 

parts of his limbs support each other, creating a relationship that could be defined as intra-limb 

mediation. In these two cases, as well as in those of a silk-weaver or a worker in industry, all the 

body part relationships mentioned above do exist, but it is also obvious that there is another 

relationship that could be defined as intra-joint association. The joint characteristics (Cartesian 

coordinates, angles etc.) affect each other inevitably, and because of the inertia effect, every 

characteristic also depends on its own history (transitioning). All those dependencies and 

relationships can be defined as four assumptions that can be used to describe human movement 

through the equation of the Gesture Operational Model (GOM) below.  

𝐺𝑂𝑀: (𝑖𝑛𝑡𝑟𝑎 − 𝑗𝑜𝑖𝑛𝑡 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛) + (𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔) + (𝑖𝑛𝑡𝑒𝑟 − 𝑙𝑖𝑚𝑏 𝑠𝑦𝑛𝑒𝑟𝑔𝑖𝑒𝑠) + (𝑖𝑛𝑡𝑟𝑎 − 𝑙𝑖𝑚𝑏 𝑚𝑒𝑑𝑖𝑎𝑡𝑖𝑜𝑛) (1) 

The purpose is through the GOM, the creation of a full body model that will be able to represent 

and describe the movement of the human body. It is assumed that each of the assumptions of 

‘intra-joint association’, ‘transitioning’, ‘intra-limb synergies’ and ‘intra-limb mediation’, contribute 

at a certain level to the production of the gesture. As far as the intra-limb mediation is concerned, it 

can be decomposed into the ‘inter-joint serial mediation’ and the ‘inter-joint non-serial mediation’. 
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The proposed model works perfectly for all three dimensions (X, Y, and Z), but for simplicity 

reasons, it will be presented only for two dimensions, the X and Y. In addition to this, only positions 

are used, but the model is designed to be able to receive joint angles as input as well. The GOM 

consists of the four assumptions as defined below. 

Assumption 1: Intra-joint assumption 

It is hypothesized that each body joint (i.e. right hand) is represented by the Cartesian coordinate 

system. This means that each motion is decomposed in X and Y coordinates for the spatial part, 

thus described by two mutually depended variables. It is assumed that there is a bidirectional 

relationship between the two variables defined as intra-joint assumption.  

Assumption 2: Transitioning 

It is also assumed that each variable depends on its own history, also called inertia effect. This 

means that the current value of each variable depends on the values of previous times, also called 

lag or dynamic effect, which is defined here as transitioning.  

Assumption 3: Inter-limb synergies 

It is assumed that some entities work together in order to create a final object. We can take as an 

example the case of a potter trying to create a clay vase. The two hands are not independent but 

work synergistically to produce the final object and give a symmetrical shape to it (inter-limb 

synergies).  

Assumption 4: Intra-limb mediation 

The assumption of mediation can be separated into two sub-assumptions, concerning the serial and 

non-serial parts of it, the inter-joint serial mediation and the inter-joint non-serial mediation. 

Assumption 4.1: Inter-joint serial mediation 

It is assumed that a body entity may depend on its neighbouring entities to which it is directly 

connected to, e.g. a glassblower, while using the pipe, moves his/her wrists along with his/her 

shoulders and elbows. In case this assumption is statistically significant there is an inter-joint serial 

mediation. 

Assumption 4.2: Inter-joint non-serial mediation 

It is assumed that each body entity depends on non-neighbouring entities of the same limb, e.g. the 

movement of the wrist may depend on the movement of the elbow and shoulder. Thus, it is highly 

likely that both direct and indirect dependencies simultaneously occur in the same gesture. 𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠 
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are named after the first letters of the respective body joint. More specifically, LSH and RSH 

represent the left and right shoulder respectively. Accordingly, LELBOW and RELBOW represent the 

left and right elbow, LWRIST and RWRIST, the left and right wrist, LHAND and RHAND the left and 

right hand. HEAD, NECK and HIPS represent, as their names indicate, the head, the neck and the 

hips.  

So, an example of the representation of those assumptions for the X-axis would be as below: 

𝐸𝑛𝑡𝑖𝑡𝑦1,X(𝑡) = 𝐸𝑛𝑡𝑖𝑡𝑦1,𝑌(𝑡 − 1) + 𝐸𝑛𝑡𝑖𝑡𝑦1,𝑋(𝑡 − 1) + 𝐸𝑛𝑡𝑖𝑡𝑦1,𝑋(𝑡 − 2) + 𝐸𝑛𝑡𝑖𝑡𝑦2,X(𝑡 − 1) (2) 

The assumptions presented above, can lead to a full body movement modelling, as shown in Figure 

3. For a better understanding of the figure, the body joints names consist of the first letter of the 

respective body joint.  
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Figure 3. Full body assumptions [37]  

 

3.3.2. Simultaneous equation system 
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The movement modelling presented above was the basis in the State Space model used. The State 

Space method permits the depiction and representation of a system, in this case of human 

movement, for trajectories forecasting.  

The State Space representation is created according to the assumptions presented above and is as 

follows. For simplicity and better understanding, the representation is in one of the three 

dimensions used. Respectively for the rest two dimensions. The definition of the equations of the 

system follows the theory of the SS modelling, which gives the possibility for the coefficients to 

dynamically change over time. A SS model for n−dimensional time series y(t), consists of a 

measurement or observation equation relating the observed data to an m−dimensional state vector 

s(t) and a Markovian state or transition equation that describes the evolution of the state vector 

over time. The state equation depicts the dependence between the system’s past and future and 

must ‘canalize’ through the state vector. The measurement or observation equation is the ‘lens’ 

(signal) through which the hidden state is observed and it shows the relationship between the 

system’s state, input and output variables. Representing a dynamic system in a SS form, allows the 

state variables to be incorporated into and estimated along with the observable model. 

Therefore, given an input u(t) and a state sS(t), a SS gives the hidden states that result to an 

observable output (signal). A general SS representation is as follows: 

 

𝑑𝑠𝑠
𝑑𝑡
= A𝑠𝑆(𝑡 − 1) + w(𝑡) (3) 

where (3) is the state equation, which is a first-order Markov process (4) is the measurement 

equation, sS is the vector of all the state variables, 
dss

dt
 is the time derivative of the state vector, u is 

the input vector, y is the output vector, A is the transition matrix that defines the weight of the 

precedent space, C is the output matrix and D is the feed-through matrix that describes the direct 

coupling between u and y, and t indicates time.  

When capturing the gestures with motion sensors, Gaussian disturbances are also added in both 

the state and the output equation. After performing the experiments presented in this work, it was 

observed that Gaussian disturbances didn’t change at all the final estimation result, so they were 

considered to be negligible.  

The SS representation of the positions on the X-axis for a body Entityi,j -where i represents the 

body part modeled in a SS form and j the dimension of each Entity- according to the GOM is 

structured as follows:  

𝑑𝑠𝑠
𝑑𝑡
= 𝐴 ∗ 𝑠𝑆(𝑡 − 1) = [

𝛼1 0
0 𝛼2

] [
𝐸𝑛𝑡𝑖𝑡𝑦1,X(𝑡 − 1)

−𝐸𝑛𝑡𝑖𝑡𝑦1,X(𝑡 − 2)
] = [

𝛼1𝐸𝑛𝑡𝑖𝑡𝑦1,X(𝑡 − 1)

−𝛼2𝐸𝑛𝑡𝑖𝑡𝑦1,X(𝑡 − 2)
] (5) 

y = C
𝑑𝑠𝑠
𝑑𝑡
+ Du (4) 
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(5)
⇒ 𝐸𝑛𝑡𝑖𝑡𝑦1,X(𝑡) = [1 0]

𝑑𝑠𝑠
𝑑𝑡
+ 𝛼3𝐸𝑛𝑡𝑖𝑡𝑦1,Y(𝑡 − 1) + 𝛼4𝐸𝑛𝑡𝑖𝑡𝑦2,X(𝑡 − 1) = 

= 𝛼1𝐸𝑛𝑡𝑖𝑡𝑦1,X(𝑡 − 1) − 𝛼2𝐸𝑛𝑡𝑖𝑡𝑦1,X(𝑡 − 2) + 𝛼3𝐸𝑛𝑡𝑖𝑡𝑦1,Y(𝑡 − 1) + 𝛼4𝐸𝑛𝑡𝑖𝑡𝑦2,X(𝑡 − 1) 

(6) 

Where αi, the coefficients that need to be estimated. In equation 6, 𝐸𝑛𝑡𝑖𝑡𝑦X(𝑡 − 2) is subtracted by 

𝐸𝑛𝑡𝑖𝑡𝑦X(𝑡 − 1), indicating difference between successive levels of dimensions, e.g. positions on Y-

axis (transitioning assumption). Equations 5 and 6 occur by equations 3 and 4 respectively. More 

specifically, equation 6 consists of the exogenous variables to which the endogenous ones, coming 

up from the state equation (equation 5), are added. As an example, the SS representation for the 

right wrist is given: 

RWRISTX(t) =  α1RWRISTX(t − 1) − α2RWRISTX(t − 2) + α3RWRISTY(t − 1) + α4LWRISTX(t − 1) (7) 

In equation 7, RWRISTX(t − 1) and RWRISTX(t − 2) are the endogenous variables, while 

RWRISTY(t − 1), and LWRISTX(t − 1) are the exogenous ones. The coefficients of the State-Space 

equations are computed with the use of Kalman filtering, via the method of maximum likelihood 

estimation. 

Kalman filter is an optimal estimator in the sense that if all noise is Gaussian, then the Kalman filter 

is what minimizes the mean square error of the estimated parameters [32] . It is a recursive method 

so that new measurements are processed as they arrive. The process of Kalman filtering consists of 

two recursive steps, the prediction and the update. 

Maximum likelihood estimation (MLE) is a method that determines values for the parameters of a 

model [32] . The parameter values are found so that they maximize the likelihood that a process is 

described by the model that produced the actually observed data. What we need to ascertain is the 

total probability of observing all data, for example the joint probability distribution of all observed 

data points. For this to be done, some condition probabilities need to be calculated, a process that 

can be a bit complex. The assumption is that all data generated are independent. Like that, the total 

probability of observing all data comes from observing all data individually.  

3.4.  Gesture recognition 

In this subsection, HMMs will be used for gesture recognition and will accompany the State Space 

representation as analysed earlier. The dataset used as an input for the recognition engine consists 

of the gesture below. 



 

 
D5.3 - Gesture and Action Recognition 

  
 

Mingei, Deliverable 10.3   24/46 

Hidden Markov Models (HMMs) have been widely used in recent years for time series recognition, 

such as voice and gesture recognition. HMMs [25] are a double stochastic process governed by a 

finite number of states (Markov), where each of the states is associated with a probability 

distribution. Transitions between states are also governed by a set of probabilities, called transition 

probabilities. For example, at a discrete time and for a given situation, an observation is generated 

based on the corresponding probability distribution. Only the observation is evident in the system, 

without knowing the state of its origin. So, the situation remains "secret", hence the name HMM.  

A gesture is a dynamic movement consisting of a sequence of postures. To recognize or rank a 

sequence of postures data, one can evaluate the probability of emission of this sequence by a set of 

previously trained HMMs. Data must be available with their respective classes (label). The approach 

comes down to the following way: 

1. Train an HMM with the gesture classes. 

2. Evaluate the probabilities of emission of the sequence to be classified for each HMM. 

3. Determine, which HMM would most likely have generated the specific sequence of observations, 

and consequently the class of the gesture. 

3.5. Gesture comparison and sonification 

Using the hybrid HMMs proposed algorithm that is created by the use of State-Space modelling, the 

probabilities of the HMMs concerning recognition will be reinforced. When the HMMs do not give 

the expected good results mostly because of the quality of the dataset, the State Space 

representation will work as an extra validation step for gesture recognition.  

For the evaluation of the performance and the proposed methodology, the metrics 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 

𝑟𝑒𝑐𝑎𝑙𝑙 and 𝑓 − 𝑠𝑐𝑜𝑟𝑒 were calculated. Those metrics are defined as shown below. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
#(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)

#(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠) + #(𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)
 (21) 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
#(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)

#(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠) + #(𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)
 (22) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑟𝑒𝑐𝑎𝑙𝑙 and 𝑓 − 𝑠𝑐𝑜𝑟𝑒 are calculated for all the gestures that each gestural vocabulary 

consists of. For a gesture of class 𝑖, #(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠) represent the number of gestures of class 𝑖 

that were recognized correctly, #(𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠) represent the number of gestures that didn’t 

belong in class 𝑖 and they were recognized from the algorithm as parts of class 𝑖. Finally, 
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#(𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠) represents the number of gestures belonging to class 𝑖 that were not 

recognized as part of it.  

More precisely, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 represents the rate of gestures that really belong in class 𝑖, among those 

who are recognized as class 𝑖, while 𝑟𝑒𝑐𝑎𝑙𝑙 represents the rate of iterations of gestures of class 𝑖 

that have been recognized as class 𝑖. A measure that combines both precision and recall is the 

𝑓 − 𝑠𝑐𝑜𝑟𝑒, which is given by equation (23).  

𝑓 − 𝑠𝑐𝑜𝑟𝑒 = 2
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (23) 

The dataset consists of 4 different gestures with 35, 34, 21 and 27 repetitions respectively. 5-20 

hidden states were used for training the gesture recognition algorithm, the number of which were 

again computed for every iteration in the resampling phase. The joints selected for training were 

the wrist, elbow and shoulder joints for each hand, along with the neck. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 appears 

improved in almost every observation and maximum likelihood. The 𝑟𝑒𝑐𝑎𝑙𝑙 in almost every gesture 

has remained stable except from the third one, where it was increased by +4%. 

The mean 𝑓 − 𝑠𝑐𝑜𝑟𝑒𝑠 and total accuracy for the used dataset is presented. The total accuracy for 

the dataset has reached 80.34% from 70.94%.  

Table 2: Gesture recognition confusion matrix using HMMs and hybrid HMMs approach [37] . 

 HMM1 HMM2 HMM3 HMM4 Recall (%) 

G1 31 2 1 1 88.57 

G2 0 33 1 0 97.05 

G3 2 2 16 1 76.19 

G4 0 0 0 27 100 

Precision (%) 93.93 89.18 88.88 93.1  

 HMM1
SS HMM2

SS HMM3
SS HMM4

SS Recall (%) 

G1 31 2 1 1 88.57 

G2 0 33 1 0 97.05 

G3 1 1 17 2 80.95 

G4 0 0 0 27 100 

Precision (%) 96.87 91.66 89.47 90  

Table 3: Mean f-score and total accuracy using comparing the HMMs approach to the hybrid 

HMMs proposed [37] . 
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Mean f-score 
HMM 90.64 % 

HMMSS 91.57 % 

Total accuracy 
HMM 91.45% 

HMMSS 92.3% 

The gestures of the glassblower, as they were performed by the user of the cultural installation, are 

being recognized and then, sonified with the method of explicit mapping. Each gesture is mapped 

to two different music samples, each one corresponding to the movement of each hand. The 

gestures to be recognized are 4 in total, mapped to 2 music samples each, thus 8 sound samples in 

total. The user is asked to perform the 4 glassblowing gestures one by one, in order to reach to the 

final stage, that of the creation of a glass carafe. A camera captures the performed gesture and 

sends as input the coordinates of the wrists of the right and left hand to the proposed hybrid 

HMMs algorithm.  

At this point of the project, the quality of the sonification in terms of how close the pitch (for the Y 

coordinate of each wrist) and panning (for the X coordinate of each wrist) is to that of the original 

sounds, has to do with how close is the performed gesture to the one of the experts. The sounds 

mapped to each gesture, are layered creating a complete music piece at the end of the gestural 

performance. So, the sonification gives a motivation to the user to complete all the tasks/gestures, 

by also reaching to a musical goal. Following the tempo of the sounds is also a helpful feedback on 

how well the gestures have been performed and in which way they need to be improved. The 

process starting from motion capturing, up to the sonification of the gesture is presented in Figure 

4. 

 

Figure 4: Explicit mapping [38]  

The next goal is to extend the existing installation in order to use both implicit and explicit mapping. 

At this second stage, the recognition results will be also exploited, reinforcing the cultural 

experience of the user.  
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Figure 5. Implicit mapping [39]  

For a better understanding of the proposed methodology for sonification, a video was created3. A 
set up simulating the glassblower's equipment has been created in the lab and it is shown in the 
figure 6. The installation user is asked to perform one by one the gestures that the routine of the 
glassblower consists of. First, the user is invited to observe the expert gestures, as they are 
presented in the video and to hear the sonification result of his movements. This is what we call 
here "the original sounds". A mapping has been done between motion parameters and acoustic 
features: The tempo modality is affected by the movement of the right and left hand in the x axis, 
while the panning of the sound is affected by the movement on the y axis. The gestures of the 
installation user are being recognized and also sonified. The quality of the sonification in terms of 
how close the tempo or the pitch is to the original sounds has to do with how well the gestures 
have been performed and recognized. The user is able to perform the gestures one by one, until he 
reaches to the final gesture, thus the creation of the glass carafe. The sounds mapped to each one 
of the gestures, are layered creating a complete music piece at the end of the gestural 
performance. So, the sonification gives a motivation to the user to complete all his tasks/gestures 
by also reaching to a musical goal. Following the tempo of the sounds is also a helpful feedback on 
how well the gestures have been performed and in which way they need to be improved. Below in 
Figures 6, 7 and 8, the stages of the user performance are being shown. 

                                                      

3
 https://www.youtube.com/watch?v=YHf_aMCRVFY&feature=youtu.be 

https://www.youtube.com/watch?v=YHf_aMCRVFY&feature=youtu.be
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Figure 6: Gesture 1, the user is trying to perform the exact gesture of the expert glassblower. 

Figure 7: Gesture 2 of the glassblowing routine. 
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Figure 9: Gesture 3 of the glassblowing routine. Figure 8: Gesture 3 of the glassblowing routine. 
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4. Multimodal interaction techniques for Mixed Reality experiences  

This section presents a natural interaction infrastructure, called Nibbler, which supports a number 

of alternative natural interaction techniques. Nibbler builds on the Microsoft Kinect sensor and was 

developed using the C# programming language, Microsoft Kinect software development kit (SDK) 

v1.8 and the .NET Framework. The GUI of the proposed software platform is presented in Figure 

10. Nibbler exposes the entire functionality offered by the Microsoft Kinect software development 

kit (SDK) v1.8. In the context of Mingei, currently, the Gestures and postures recognition part of the 

infrastructure has been fine-tuned and integrated to the Mingei workflow for facilitating user based 

interaction with the UI of the Mixed Reality surface. 

Other modalities, such as Speech Recognition are also available but not foreseen to be used at 

least due to the current version of use cases, UI designs and concepts definitions. In the case of 

Speech Recognition this happen through the Microsoft Speech API and thus a plethora of languages 

is supported, if needed. 

 

Figure 10. Nibbler UI [40]  

4.1. Rationale  

The Mingei Mixed Reality use cases as presented in the current state of the project will involve a 

user interacting with tools in front of a virtual surface. The virtual surface itself does not contain 

any specialised equipment and thus interaction should happen through tool manipulation and 

through user gestures in a natural interaction paradigm. 

This poses several challenges to the recognition part of the Gesture and Action recognition 

infrastructure of Mingei for the following reasons: 

 Interaction and tracking of interaction with physical objects is a challenging research topic 
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 Combination of object and gesture based interaction makes the required technology even 

more challenging  

To this end Mingei has taken the technical decision to distinguish object based interaction and 

natural interaction by providing two trackers running simultaneously in the same equipment and 

switching between them on the fly based on the UI requirements. This will allow Mingei to exploit 

mature technologies and research outcomes for the natural interaction part while investing more 

effort to object based interaction. 

In this context Nibbler infrastructure is intended to support the natural part of the interaction 

with the UI elements of the Mixed Reality (MR) surface implemented in D6.3 and will run in 

conjunction to the Gesture/Posture recognition techniques presented in this deliverable. The 

distinction between these modalities will allow the system to depend on different sub-system for 

each task thus switching between modalities to reduce error rates, improve effectiveness and 

enhance user experience. 

4.2. Sensory modules 

Nibbler is organized into various modules, each of which is responsible for specific sensory 

requirements. Each module is presented in detail in the following sections. 

4.2.1. Skeleton tracking module 

The skeleton tracking module is responsible for reporting position information of each skeleton 

joint. This module performs geometric transformations on each skeleton joint position constituting 

every real time skeleton frame. This happens in order to get the same valid results regardless of the 

position of the user who may be located everywhere inside the sensor’s field of view.  
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Figure 11. Nibbler in action and UI decomposition [41] . 

The skeleton-tracking module transforms the user’s skeleton to a local scope, i.e., expressed 

relatively to the 3-axis coordination system cantered in the middle of the user’s shoulders. The 

transformation is applied with respect to three distinct steps, translation, scaling and rotation, as 

shown in Figure 11. Firstly, each joint’s x-axis position is subtracted with the position dynamically 

calculated as the centre of both shoulders. This way, skeleton tracking is performed regardless of 

the user’s relative position to the sensor, as presented in Figure 12. Secondly, the joints’ positions 

are normalized in order to be scale-independent. Finally, the module rotates the skeleton so as to 

align the user’s skeleton to the sensor. This is accomplished by multiplying each joint’s position with 

a matrix calculated from the angle θ, where θ is equal to –yaw (yaw is the angle of line between the 

right and the left shoulder). 
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Figure 12. An example of position independence between user and sensor [42] . 

 

Figure 13. An example of alignment independence between user and sensor [43] . 

4.2.2. Gesture/Posture recognition module 

Although much work has been done in the domain of Gesture/Posture recognition, there are no 

ready to use solutions widely available to developers aiming to incorporate Kinect based gesture 

recognition in their applications. However, the Microsoft Kinect SDK provides a concrete example 

containing sample source code for the next and previous gestures. To this end, this part of the 

module partially replicates existing works in gestures recognition building on well-established 

practices in the domain so as to integrate this very important form of natural interaction to the 

developed framework. The Gesture/Posture recognition module implements the dynamic time 

warping (DTW) algorithm for measuring similarity between two skeleton sequences which may vary 

in time or speed. The most important contributions of this module is the provision of a training 

platform that allows developers to fine tune their gestures by having access to a number of 

alternative biometric parameters. In general, the DTW algorithm can be applied to any data which 

can be turned into a linear sequence. A well-known application has been automatic speech 

recognition, to cope with different speaking speeds4. The first skeleton sequence is captured and 

fine-tuned only once during the training process, while the second one is captured constantly in 

real time. During the training process, the author of a gesture is able to record a skeleton sequence 

using his own body as input data and store it in the database (see Figure 14). The number of the 

frames in a sequence may vary from 1 up to a maximum predefined variable, which is usually 30 

considering that 30 is the maximum sensor’s frame rate according to its specification details. 

                                                      

4
 http://en.wikipedia.org/wiki/Dynamic_time_warping 
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Figure 14. The author starts recording a skeleton sequence in seated mode (i.e. only the upper 

half skeleton captured) [44]  

End users are provided with a plethora of functions to optimally adjust gesture/posture 

recognition. In particular, end users may (see Figure 14) add a new gesture using button (#1), delete 

an existing one using button (#2), or start/stop skeleton sequence recording using (#3). When 

recording is completed, the author is able to preview the recorded skeleton sequence, edit it and 

fine tune the captured skeleton sequence by pressing button (#4) and using the pop up 

configuration window as shown in Figure 14. This window offers functionality for: a) renaming (#1), 

b) adjusting the maximum distance with the real time skeleton sequence (#2) for successful 

recognition (see below for further details), c) modifying the number of the minimum frames (#3) 

that have to be captured in real time before the recognition process is triggered, d) trimming the 

corresponding skeleton sequence (#5), (#6) and e) adjusting some of the basic parameters used in 

the DTW algorithm such as the slop constraint which determines the maximum slope in the optimal 

path (#7). Additionally, the author can select only the joints which mainly characterize a gesture 

(#8), i.e., when the goal is to recognize a gesture in which the user uses his right hand to select the 

next photo by slightly moving it from right to left, the remaining joints of the body do not need to 

be taken into account. Furthermore, if some axis doesn’t play an important role for a gesture, such 

as the Z axis (the axis of depth) in the aforementioned example, the author can disable it by 
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unselecting the corresponding checkbox (#4). Lastly, a gesture playback panel (#9) is available to 

allow the author preview the recorded skeleton sequence in front and side realization. 

 

Figure 15: Euclidean vs. Dynamic Time Warping Matching [45]  

When the recognition module is running, it captures constantly, in real time, skeleton frames, and 

when their total number reaches the number equivalent to one second, it then starts the matching 

process. The latter calculates an optimal distance between the real time sequence and every 

sequence which is stored in the database. The sequences are "warped" non-linearly in the time 

dimension to determine a measure of their similarity independent of certain non-linear variations 

in the time dimension. Dynamic Time Warping (DTW) allows elastic shifting in the time domain and 

matches sequences that are similar but out of phase as shown in Figure 15.  

4.2.3. Using Nibbler from a developer’s perspective 

The presented modules integrated in the Nibbler sensory infrastructure run simultaneously without 

any performance issues at almost 30fps on an ordinary pc (see Figure 11). Figure 11 illustrates the 

settings that are available for configuring Nibbler for the desired context of use. Nibbler 

communicates with clients and reports each module’s measurements via a tcp-ip socket. 

Additionally, Nibbler can accept requests from clients in real time to change either the gesture 

training set or the grammar used for speech recognition. In this context, Nibbler’s functionality is 

described in the interface definition language (IDL5) as follows: 

Definitions 

enum JointTrackingState { Inferred, NotTracked, Tracked}; 

enum JointType {   

  HipCenter, 

  Spine, 

  ShoulderCenter, 

  Head, 

  ShoulderLeft, 

  ElbowLeft, 

  WristLeft, 

  HandLeft, 

  ShoulderRight, 

  ElbowRight, 

  WristRight, 

  HandRight, 

                                                      

5
 http://en.wikipedia.org/wiki/Interface_description_language  

http://en.wikipedia.org/wiki/Interface_description_language
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  HipLeft, 

  KneeLeft, 

  AnkleLeft, 

  FootLeft, 

  HipRight, 

  KneeRight, 

  AnkleRight, 

  FootRight 

}; 

struct Point3D { 

 double X; 

 double Y; 

 double Z;  

}; 

struct Joint { 

 JointTrackingState trackingState; 

 JointType type; 

 Point3D position; 

}; 

struct SemanticResultValue { 

 string phrase; 

 string value; 

};   

typedef sequence<SemanticResultValue> SemanticResultValueSeq; 

Gesture 

recognition 

ami::StringSeq GetGestureNames (); 

boolean LoadGestures(in ami::OctetSeq gesturesConfigStream); 

void Event_GestureRecognized (in string gesture, in double distance); 

void Event_GestureRecognizedExt (in string gesture, in double distance, 

in ami::OctetSeq colorImgStream); 

Head pose 

estimation 

void Event_HeadPoseChanged (in double pitch, in double yaw, in double 

roll); 

void Event_HeadRectChanged (in long left, in long bottom, in long top, 

in long width, in long height); 

Face 

tracking 

void Event_FaceAnimationUnitsChanged (in ami::FloatSeq 

faceAnimationUnits);  

Skeleton 

tracking 

void Event_HandRightPositionChanged (in Point3D position);  

void Event_HandLeftPositionChanged (in Point3D position); 

void Event_SkeletonChanged (in JointSeq joints); 

void Event_SkeletonChanged (in JointSeq joints);  

4.3. Evaluation through the Mimesis game 

The Mimesis game is an existing software product of FORTH and was selected as a heuristic 

evaluation platform of the toolkit. The evaluation targeted the validation of the implemented 

technology in terms of interaction in order to ensure that sufficient results are received through the 

recognition infrastructure. This validation is not related with the user based evaluation of the final 
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Mingei experiences that will happen in the context of the pilots’ realisation. On the contrary it 

regards the validation of technology that will be used for the formulation of the pilots.  

The Mimesis game requests the user to assume various body postures as illustrated in Figure 17 

and due to this fact it is a very good testbed for measuring recognition rates. Using the Nibbler 

sensory infrastructure, the game measures the quality and performance of the body posture. In 

detail, the user stands in front of a display, which is positioned horizontally, (e.g., near to a wall) 

giving the feeling of standing in front of a mirror. At the upper side of the large display, a depth 

camera (i.e., Kinect sensor) is positioned, which allows Nibbler to recognize the user position and 

his gestures as well. The sensor sets restrictions regarding the view area that ranges from 1.2 m to 4 

m and in around 45 degrees viewing angle. The Mimesis game requires the user to imitate a series 

of postures demonstrated by the system (see Figure 17).  
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Figure 16. Mimesis game gestures [46]  

The Mimesis game randomly selects a different posture. When all postures have appeared the 

game ends. Figure 18 presents some screenshots where the user is assuming the pose indicated by 

the VC. 
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Figure 17. A short compilation of screenshots during playing Mimesis game [47]  

4.4. Preliminary evaluation results  

In general, the evaluation of the Nibbler sensory infrastructure in the context of the Mimesis game 

proved that users (developers, part of the team at FORTH) where generally satisfied by the 

recognition rate of the system. The main shortcoming that rose was that in some cases users were 

unable to keep an optimal distance from the large display. This had as a result the inability of 

Nibbler’s skeleton tracking module to recognize their appearance due to the limitations set by the 

sensor device (i.e., Kinect sensor has a practical ranging limit of 1.2–3.5m).  

Thus it is recommended for Mingei installations that visual cues to the virtual world and the 

physical world exist so as to provide an indication regarding whether the user is assuming a correct 

position within the viewing frame of the sensor. Thus the users will have visual feedback regarding 

their position (e.g. green footprints that appear in the virtual world) and when they move too close 

or too far these may turn to orange and then red. Finally, these visual cues may disappear when the 

user is out of range.  

4.5. Discussion  

In this section the sensory infrastructure mechanism, called Nibbler was presented together with 

some initial experiment to evaluate the functionality of the game in the context of real usage 

scenarios.  

To this end an existing Virtual Space was used where the user should position him-self and assume 

several postures.  

With this scenario Mingei simulated the usage of the infrastructure in the context of the Mingei 

Mixed Reality surface where apart of the object based interaction users will be requested to 

assume certain postures to interact with the user interface of the surface. For example within a 

workshop (e.g. glassmaking) users will have the possibility to interact with tools to emulate the 

glassmaker gestures but also assume postures to interact with the UI of the workshop (e.g. Hands 

up: pause experience, hands down: resume, etc.).  
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The effectiveness of user interaction and of the selection of gestures and postures will undergo a 

user based usability and user experience evaluation during the pilot realisation.  
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5. First experimental results of movement sonification and future works 

First preliminary results of movement sonification have been achieved based on the methodology 

described in previous sections. A gestural vocabulary has been defined by each cultural partner, as 

described in D5.1 and the data are processed in order to be used for the definition of the gesture 

operational model and to be then compared with the gesture of the final user. A first version of 

bounds (minimum and maximum) per gesture performed by the expert has been defined. A first 

version of a module permitting to map a certain number of motion parameters to sound 

characteristics have been developed and a first test in lab conditions has been released where a) 

experts gestures have been simulated, performed and recorded by researchers, b)the same 

gestures have been reproduced and their parameters have been mapped to sound (movement 

Sonification). However, no quantitative analysis has been performed yet. 

The future work will be focused on the implementation of the methods developed in real-time in 

order to achieve the comparison between the time-series and the measurement of their deviation. 

The features and the motion parameters that will be compared should be identified. In parallel the 

structure of the interaction mechanism (thresholds, rules etc.) that will trigger the sonification will 

be defined. It is necessary to take into consideration A deeper study of various sonification 

techniques (mostly explicit and implicit mapping) will be done in order to identify and implement 

the most appropriate strategy. 
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